0601 相对密度测定法

密度系指在规定的温度下,单位体积内所含物质的质量数,即质量与体积的比值;相对密度系指在相同的温度、压力条件下,某物质的密度与水的密度之比。除另有规定外,温度为20℃。

纯物质的相对密度在特定的条件下为不变的常数。但如物质的纯度不够,则其相对密度的测定值会随着纯度的变化而改变。因此,测定兽药的相对密度,可用以检查兽药的纯杂程度。

液体兽药的相对密度,一般用比重瓶(图1)测定; 测定易挥发液体的相对密度,可用 韦氏比重秤(图2)测定。测定兽药的相对密度也可采用震荡型密度计法测定。

用比重瓶测定时的环境(指比重瓶和天平的放置环境)温度应略低于 20 ℃或各品种项下规定的温度。

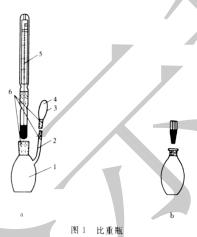
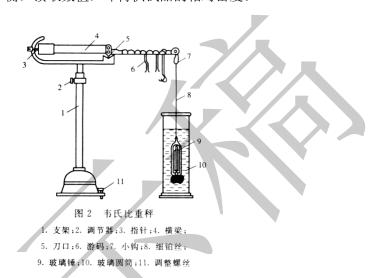


图 1 比重瓶 1. 比重瓶主体; 2. 侧管; 3. 侧孔; 4. 罩;

一、比重瓶法

(1)取洁净、干燥并精密称定重量的比重瓶(图 1a),装满供试品(温度应低于 20℃或各品种项下规定的温度)后,装上温度计(瓶中应无气泡),置 20℃(或各品种项下规定的温度)的水浴中放置若干分钟,使内容物的温度达到 20℃(或各品种项下规定的温度),用滤纸除去溢出侧管的液体,立即盖上罩。然后将比重瓶自水浴中取出,再用滤纸将比重瓶的外面擦净,精密称定,减去比重瓶的重量,求得供试品的重量后,将供试品倾去,洗净比重瓶,装满新沸过的冷水,再照上法测得同一温度时水的重量,按下式计算,即得。


供试品的相对密度= 供试品重量 水重量

(2)取洁净、干燥并精密称定重量的比重瓶(图 1b),装满供试品(温度应低于 20℃或各品种项下规定的温度)后,插入中心有毛细孔的瓶塞,用滤纸将从塞孔溢出的液体擦干,置 20℃(或各品种项下规定的温度)恒温水浴中,放置若干分钟,随着供试液温度的上升,过多的液体将不断从塞孔溢出,随时用滤纸将瓶塞顶端擦干,待液体不再由塞孔溢出,迅即

将比重瓶自水浴中取出,照上述(1)法,自"再用滤纸将比重瓶的外面擦净"起,依法测定,即得。

二、韦氏比重秤法

取 20℃时相对密度为 1 的韦氏比重秤(图 2),用新沸过的冷水将所附玻璃圆筒装至八分满,置 20℃(或各品种项下规定的温度)的水浴中,搅动玻璃圆筒内的水,调节温度至 20℃(或各品种项下规定的温度),将悬于秤端的玻璃锤浸入圆筒内的水中,秤臂右端悬挂游码于 1.0000 处,调节秤臂左端平衡用的螺旋使平衡,然后将玻璃圆筒内的水倾去,拭干,装入供试液至相同的高度,并用同法调节温度后,再把拭干的玻璃锤浸入供试液中,调节秤臂上游码的数量与位置使平衡,读取数值,即得供试品的相对密度。

如该比重秤系在 4° C时相对密度为 1,则用水校准时游码应悬挂于 0.9982 处,并应将在 20° C测得的供试品相对密度除以 0.9982。

三、振荡型密度计法

振荡型密度计主要由 U 型振荡管(一般为玻璃材质,用于放置样品)、电磁激发系统(使振荡管产生振荡)、频率计数器(用于测定振荡周期)和控温系统组成。

通过测定 U 型振荡管中液体样品的振荡周期(或频率)可以测得样品的密度。振荡频率 (T)与密度(p)、测量管常数(c)、振荡管的质量(M)和体积(V)之间存在下述关系:

$$T^2 = \frac{M + \rho \times V}{c} \times 4\pi^2$$

如 果 将 $c'(4\pi^{c} \times V)$ 定义为常数 A, M/V 定义为常数 B, 则上述公式可简化如下:

$$\rho = A \times T^2 - B$$

常数 A 和 B 可以通过往振荡管中加入两种已知密度的物质进行测定,常用的物质为脱气水(如新沸过的冷水)和空气。分别往样品管中加入干燥空气和脱气水(如新沸过的冷水),记录测得的空气的振动周期 T 和水的振动周期 T_w ,由下式计算出空气的密度值 d_a :

$$d_a = 0.001\ 293 \times \frac{273.15}{t} \times \frac{p}{101.3}$$

式中 d。为测试温度下的空气密度, g/ml;

- t 为测试温度, K:
- p 为大气压, kPa。

从附表中查出测得温度下水的密度值 da, 照下述公式分别计算出常数 A 和常数 B:

$$A = \frac{T_{w}^{2} - T_{s}^{2}}{d_{w} - d_{s}}$$

$$B = T_{s}^{2} - A \times d_{s}$$

式中 Tw为试管内为水时观测的振荡周期, s:

- Ta为试管内为空气时观测的振荡周期, s;
- dw 为测试温度下水的密度, g/ml;
- da 为测试温度下空气的密度, g/ml;

如果使用其他校准液体,则使用相应的振荡周期T值和d值。

如果仪器具有从常数 A 和 B 以及样品测得的振动周期计算密度的功能,则常数 A 和 B 无需计算,按照仪器生产商的操作说明直接读取供试品的密度值。

物质的相对密度可根据下式计算:

相对密度=ρ/0.9982

式中 ρ为被测物质在 20℃时的密度; 0.9982 为水在 20℃时的密度。

对仪器的一般要求 用于相对密度测定的仪器的读数精度应不低于士 0.001g/ml,并应定期采用已知密度的两种物质(如空气和水)在 20℃(或各品种正文项下规定的温度)下对仪器常数进行校准。建议每次测量前用脱气水(如新沸过的冷水)对仪器的读数准确性进行确认,可根据仪器的精度设定偏差限度,例如精确到 ±00001g/ml 的仪器,水的测定值应在 0.9982g/ml±00001g/ml 的范围内,如超过该范围,应对仪器重新进行校准。

测定法 照仪器操作手册所述方法,取供试品,在与仪器校准时相同的条件下进行测定。测量时应确保振荡管中没有气泡形成,同时还应保证样品实际温度和测量温度一致。

如必要,测定前可将供试品温度预先调节至约 20℃(或各品种正文项下规定的温度),这样可降低在 U 型振荡管中产生气泡的风险,同时可缩短测定时间。

黏度是影响测量准确度的另一个重要因素,在进行高黏度样品的测定时,可选用具有 黏度补偿功能的数字式密度计进行测定,或者选取与供试品密度和黏度相近的密度对照物质 (密度在供试品的土 5%、黏度在供试品的士 50%的范围内)重新校准仪器。

附表 不同温度下水的密度值

温度	密度	温度	密度	温度	密度
(℃)	(g/ml)	(°C)	(g/ml)	(°C)	(g/ml)
0.0	0.999 840	21.0	0.997991	40.0	0.992 212
3.0	0.999 964	22.0	0. 997 769	45.0	0.990 208
4.0	0.999 972	23.0	0.997 537	50.0	0.988 030
5.0	0.999964	24.0	0.997 295	55.0	0.985 688
10.0	0.999699	25.0	0.997 043	60.0	0. 983 191
15.0	0.999 099	26.0	0.996 782	65.0	0. 980 546
15.56	0.999012	27.0	0.996 511	70.0	0. 977 759
16.0	0.998 943	28.0	0.996 231	75. 0	0. 974 837
17.0	0.998 774	29.0	0.995 943	80.0	0. 971 785
18.0	0.998 595	30.0	0.995 645	85. 0	0.968 606
19.0	0.998 404	35.0	0.994 029	90.0	0.965 305
20.0	0.998 203	37. 78	0.993 042	100	0. 958 345